首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   19篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   8篇
  2016年   6篇
  2015年   12篇
  2014年   10篇
  2013年   17篇
  2012年   14篇
  2011年   18篇
  2010年   5篇
  2009年   6篇
  2008年   17篇
  2007年   18篇
  2006年   6篇
  2005年   9篇
  2004年   12篇
  2003年   11篇
  2002年   13篇
  2001年   5篇
  2000年   10篇
  1999年   11篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   6篇
  1990年   10篇
  1989年   2篇
  1988年   6篇
  1987年   14篇
  1986年   9篇
  1985年   6篇
  1984年   11篇
  1983年   7篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   5篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   4篇
  1966年   5篇
排序方式: 共有332条查询结果,搜索用时 16 毫秒
81.
Although molecular dynamics simulations suggest multiple interior pathways for O2 entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. The resultant map argued strongly for ligand movement through a short channel from the heme iron to solvent that is gated by the distal histidine (His-64(E7)) near the solvent edge of the porphyrin ring. In this work, we have applied the same mutagenesis mapping strategy to the neuronal mini-hemoglobin from Cerebratulus lacteus (CerHb), which has a large internal tunnel from the heme iron to the C-terminal ends of the E and H helices, a direction that is 180° opposite to the E7 channel. Detailed comparisons of the new CerHb map with expanded results for Mb show unambiguously that the dominant (>90%) ligand pathway in CerHb is through the internal tunnel, and the major (>75%) ligand pathway in Mb is through the E7 gate. These results demonstrate that: 1) mutagenesis mapping can identify internal pathways when they exist; 2) molecular dynamics simulations need to be refined to address discrepancies with experimental observations; and 3) alternative pathways have evolved in globins to meet specific physiological demands.  相似文献   
82.
Truncated hemoglobins (trHbs) constitute a distinct lineage in the globin superfamily, distantly related in size and fold to myoglobin and monomeric hemoglobins. Their phylogenetic analyses revealed that three groups (I, II, and III) compose the trHb family. Group I and II trHbs adopt a simplified globin fold, essentially composed of a 2-on-2 alpha-helical sandwich, wrapped around the heme group. So far no structural data have been reported for group III trHbs. Here we report the three-dimensional structure of the group III trHbP from the eubacterium Campylobacter jejuni. The 2.15-A resolution crystal structure of C. jejuni trHbP (cyano-met form) shows that the 2-on-2 trHb fold is substantially conserved in the trHb group III, despite the absence of the Gly-based sequence motifs that were considered necessary for the attainment of the trHb specific fold. The heme crevice presents important structural modifications in the C-E region and in the FG helical hinge, with novel surface clefts at the proximal heme site. Contrary to what has been observed for group I and II trHbs, no protein matrix tunnel/cavity system is evident in C. jejuni trHbP. A gating movement of His(E7) side chain (found in two alternate conformations in the crystal structure) may be instrumental for ligand entry to the heme distal site. Sequence conservation allows extrapolating part of the structural results here reported to the whole trHb group III.  相似文献   
83.
84.
The purpose of this study was to define the role of the Rho family of small GTPases in the beta-adrenergic regulation of the Na,K-ATPase in alveolar epithelial cells (AEC). The beta-adrenergic receptor agonist isoproterenol (ISO) increased the Na,K-ATPase protein abundance at the plasma membrane and activated RhoA in a time-dependent manner. AEC pretreated with mevastatin, a specific inhibitor of prenylation, or transfected with the dominant negative RhoAN19, prevented ISO-mediated Na,K-ATPase exocytosis to the plasma membrane. The ISO-mediated activation of RhoA in AEC occurred via beta2-adrenergic receptors and involved Gs-PKA as demonstrated by incubation with the protein kinase A (PKA)-specific inhibitors H89 and PKI (peptide specific inhibitor), and Gi, as incubation with pertussis toxin or cells transfected with a minigene vector for Gi inhibited the ISO-mediated RhoA activation. However, cells transfected with minigene vectors for G12 and G13 did not prevent RhoA activation by ISO. Finally, the ISO-mediated Na,K-ATPase exocytosis was regulated by the Rho-associated kinase (ROCK), as preincubation with the specific inhibitor Y-27632 or transfection with dominant negative ROCK, prevented the increase in Na,K-ATPase at the plasma membrane. Accordingly, ISO regulates Na,K-ATPase exocytosis in AEC via the activation of beta2-adrenergic receptor, Gs, PKA, Gi, RhoA, and ROCK.  相似文献   
85.
A very short hemoglobin (CerHb; 109 amino acids) binds O(2) cooperatively in the nerve tissue of the nemertean worm Cerebratulus lacteus to sustain neural activity during anoxia. Sequence analysis suggests that CerHb tertiary structure may be unique among the known globin fold evolutionary variants. The X-ray structure of oxygenated CerHb (R factor 15.3%, at 1.5 A resolution) displays deletion of the globin N-terminal A helix, an extended GH region, a very short H helix, and heme solvent shielding based on specific aromatic residues. The heme-bound O(2) is stabilized by hydrogen bonds to the distal TyrB10-GlnE7 pair. Ligand access to heme may take place through a wide protein matrix tunnel connecting the distal site to a surface cleft located between the E and H helices.  相似文献   
86.
Short-term mechanical ventilation with high tidal volume (HVT) causes mild to moderate lung injury and impairs active Na+ transport and lung liquid clearance in rats. Dopamine (DA) enhances active Na+ transport in normal rat lungs by increasing Na+-K+-ATPase activity in the alveolar epithelium. We examined whether DA would increase alveolar fluid reabsorption in rats ventilated with HVT for 40 min compared with those ventilated with low tidal volume (LVT) and with nonventilated rats. Similar to previous reports, HVT ventilation decreased alveolar fluid reabsorption by ~50% (P < 0.001). DA increased alveolar fluid reabsorption in nonventilated control rats (by ~60%), LVT ventilated rats (by approximately 55%), and HVT ventilated rats (by ~200%). In parallel studies, DA increased Na+-K+-ATPase activity in cultured rat alveolar epithelial type II cells (ATII). Depolymerization of cellular microtubules by colchicine inhibited the effect of DA on HVT ventilated rats as well as on Na+-K+-ATPase activity in ATII cells. Neither DA nor colchicine affected the short-term Na+-K+-ATPase alpha1- and beta1-subunit mRNA steady-state levels or total alpha1- and beta1-subunit protein abundance in ATII cells. Thus we reason that DA improved alveolar fluid reabsorption in rats ventilated with HVT by upregulating the Na+-K+-ATPase function in alveolar epithelial cells.  相似文献   
87.
Mitochondrial phenotypic alterations, mitochondrial DNA content and mitochondrial DNA deletions in a slow, Soleus, and a fast, Extensor Digitorum Longus, skeletal muscle of 3- and 15-month-old hindlimb suspended rats have been studied. Cytochrome c oxidase-negative fibers appeared after unloading in all examined animals and their percentage increased with increasing unloading time. After 14 days of suspension the mitochondrial DNA content did not change in 3-month-old but decreased significantly in 15-month-old rats. Soleus was much more affected by unloading than Extensor Digitorum Longus. The mitochondrial DNA deletion of 4834 bp as well as other mtDNA deletions, researched with Long Distance-PCR, were absent in both studied muscles before and after unloading.  相似文献   
88.
Hirschsprung disease (HSCR) is a common genetic disorder characterized by intestinal obstruction secondary to enteric aganglionosis. HSCR demonstrates a complex pattern of inheritance, with the RET proto-oncogene acting as a major gene and with several additional susceptibility loci related to the Ret-signaling pathway or to other developmental programs of neural crest cells. To test how the HSCR phenotype may be affected by the presence of genetic variants, we investigated the role of a single-nucleotide polymorphism (SNP), 2508C-->T (S836S), in exon 14 of the RET gene, characterized by low frequency among patients with HSCR and overrepresentation in individuals affected by sporadic medullary thyroid carcinoma. Typing of several different markers across the RET gene demonstrated that a whole conserved haplotype displayed anomalous distribution and nonrandom segregation in families with HSCR. We provide genetic evidence about a protective role of this low-penetrant haplotype in the pathogenesis of HSCR and demonstrate a possible functional effect linked to RET messenger RNA expression.  相似文献   
89.
Neuroglobin and cytoglobin are two recently discovered members of the vertebrate globin family. Both are intracellular proteins endowed with hexacoordinated heme-Fe atoms, in their ferrous and ferric forms, and display O2 affinities comparable with that of myoglobin. Neuroglobin, which is predominantly expressed in nerve cells, is thought to protect neurons from hypoxic–ischemic injury. It is of ancient evolutionary origin, and is homologous to nerve globins of invertebrates. Cytoglobin is expressed in many different tissues, although at varying levels. It shares common ancestry with myoglobin, and can be traced to early vertebrate evolution. The physiological roles of neuroglobin and cytoglobin are not completely understood. Although supplying cells with O2 is the likely function, it is also possible that both globins act as O2-consuming enzymes or as O2 sensors. Here, we review what is currently known about neuroglobin and cytoglobin in terms of their function, tissue distribution and relatedness to the well-known hemoglobin and myoglobin. Strikingly, the data reveal that O2 metabolism in cells is more complicated than was thought before, requiring unexpected O2-binding proteins with potentially novel functional features.  相似文献   
90.
Lactobacillus helveticus ATCC 15009 and CRL 581, and Lact. casei LC3 were grown in a complex medium with and without 15 mmol 1-1 of neutralized propionic acid and assayed for proton-translocating ATPase activity. The enzyme activity was higher when the medium contained fatty acid than in its absence for all strains studied. Characteristics of this increased ATPase were identical to those of the enzyme located on the membrane of normal cells. The substrate consumption rate of resting cells was increased by propionate. This effect was reverted by the specific H+-ATPase inhibitor N,N '-dicyclohexylcarbodiimide indicating that the increment of fermentative activity was related to the H+-ATPase activity. These results suggest that the amplification of H+-ATPase activity could be involved in the inhibition of lactobacilli growth in cultures where propionic acid is unavoidably present, such as some mixed cultures with propionibacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号